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Abstract—With distributed communication, computation, and
storage resources close to end users/devices, fog computing
(FC) makes it very promising to develop cognitive portable
ground penetrating radars (GPRs) operating intelligently and
adaptively under varying sensing conditions. However both strict
performance requirement and tradeoffs between communica-
tion and computation pose significant challenges. This paper
presents a fog computing framework for cognitive portable GPRs.
Specifically, the system architecture of an FC-enabled cognitive
portable GPR is developed. Based on the identification of various
involved computation tasks, an offloading policy was proposed to
determine whether computation tasks should be executed locally
or offloaded to the fog server. Experimental results show the
efficacy of the proposed methods. The framework also provides
insight into the design of cognitive Internet of things (IoT)
supported by fog computing.

Index Terms—Fog computing, offloading, ground penetrating
radar, cognitive sensing

I. INTRODUCTION

Fog computing is a computing paradigm that uses one
or more collaborative end-user clients or near-user edge IoT
devices to carry out a substantial amount of storage, communi-
cation, control, configuration, measurement and management.
With distributed communication, computation, and storage
resources and services on or close to devices and systems in
the control of end-users, fog computing may enable real-time
autonomous configurations and operations of those devices and
systems. [1]–[3].

Portable GPRs, such as handheld or drone-borne GPRs,
have been extensively used in many industrial applications,
such as coal mining, structural health monitoring, subsurface
utilities detection and localization [5], [6]. GPR is a non-
destructive evaluation technique for effective assessment of
subsurface conditions in large dielectric bodies, such as city
streets, by launching and receiving electromagnetic (EM)
waves from the same side of a structure. Location and na-
ture of subsurface objects can be characterized by collecting
and analyzing reflected and scattered waves [7], [8]. GPR-
based subsurface survey is complicate as various sensing
environment and subsurface targets have dissimilar features.
Processing GPR data and extracting information of interest
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are challenging and involve a series of sophisticated steps.
In nearly all existing GPR systems, the GPR data processing
is performed off-line where the data are collected on field
and stored, and then post-processed on a computer after the
scanning. Such a processing approach does not adaptively
adjust GPR operations in the survey.

To achieve optimum sensing performance, it is desired to
design a GPR system that can operate adaptively under varying
sensing conditions. For instance, to detect a shallowly buried
object of small size, GPR radiating high-frequency EM waves
can result in a fine sensing resolution; while to detect deep
buried object, radiating lower-frequency EM waves have better
ground penetrating capabilities. Based on such observations,
cognitive GPRs have been proposed and investigated by dy-
namically tuning of GPR operational parameters to improve
sensing performance [9].

Fog computing provides ideal support for implementing
and operating cognitive portable GPRs. The functions of
GPR signal processing and intelligence generation require
significant computation and storage capabilities, which could
poses significant challenges to portable GPRs that have limited
energy, computing, and storage resources. With fog comput-
ing, a promising solution is to offload some or all of the
computation and storage tasks to a fog server. A cognitive GPR
requires contiguous low-latency communications for real-time
transmission of data and control feedback. The proximity
of fog servers to end users/devices may satisfy such com-
munication requirement. In contrast, traditional remote cloud
computing services have difficulty providing uninterrupted
services to cognitive portable GPRs due to the intermittent
network connectivity and long communication latency.

Although fog computing makes it very promising to develop
a cognitive portable GPR, there are still several significant
research challenges that need to be addressed. Online intelli-
gence generation requires continuous and real-time transmis-
sion and analysis of vast volumes of GPR data. A roadway
GPR inspection can produce 100 or more gigabytes of data per
hour. To reduce the amount of data to be transmitted from the
GPR to the fog servers, some local data-processing functions
could be performed at the transceiver side. However, the
local computation time will increase the overall latency of the
feedback loop. Therefore, the tradeoff between communication
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Fig. 1. The workflows of a traditional GPR (a) and a cognitive GPR (b).

and computation of the perception-action cycle needs to be
studied by considering resource constraints and performance
requirement. As the GPR moves, service might need to mi-
grate from one fog server to another, posing challenges on
continuous operation and control of GPRs.

There has been some research conducted on computation of-
floading for fog/edge computing [10]–[12]. In most of existing
research on offloading, delay performance is evaluated either
by using delay bound values or average delay values based
on statistical information of the involved stochastic processes,
such as the computation task arrival and the wireless channels,
which may make them inapplicable in practical applications.

This paper is focused on the development of a fog comput-
ing framework that enables cognitive portable GPRs. First, a
fog computing architecture for cognitive portable GPRs is de-
veloped and the functions of different modules are explained.
Then, different computation tasks in a cognitive GPR are
identified. A computation task offloading policy is designed
to determine whether a computation task should be executed
at the local GPR computer or at a remote fog server. To the
best of our knowledge, this is the first work on fog computing
for the development of cognitive portable GPRs.

II. THE PROPOSED SYSTEM ARCHITECTURE

A conventional mode of GPR operation is that an expert sets
the operational parameters into a proper configuration based

on previous experience, which is an iterative time-consuming
process, as shown in Figure 1(a). An alternative is to use
a cognitive GPR where intelligence is generated on the fly
to adaptively adjust the operational parameters based on data
analysis and feedback control [9].

As shown in Figure 1(b), a cognitive GPR consists of
an adaptive GPR transceiver, a perceptor module, a memory
module, and a cognitive analyzer. The operation of the cog-
nitive GPR follows a perception-action cycle: first, the GPR
transceiver collects the reflected wave data about subsurface
objects and sends them to the preceptor. Then, the preceptor
processes and analyzes the data to extract signature patterns
and format a perception of subsurface conditions. The memory
module has a GIS database containing urban subsurface con-
dition attributes and spatial locations. The cognitive analyzer
carries out machine learning based on both the processing
results from the perceptor and the prior knowledge about GPR
measurement from the memory module to produce intelligent
response for the control of radar transceiver reconfigurations.
Once receiving the intelligent feedback from the cognitive
analyzer, the adaptive GPR transceiver changes its operational
parameters. During this process, collected GPR data can also
be integrated with other data acquired by IoT devices such as
positioning sensors.

Next, a system architecture for the proposed FC-enabled
cognitive portable GPR is presented. As shown in Figure 2,
the GPR mainly includes two parts: the front end and the
back end. The front end is portable and includes a GPR
transceiver for launching and receiving electromagnetic waves,
a microcomputer for local computation, and a wireless access
point for communicating with the fog server. The back end
of the cognitive GPR, including the perceptor module, the
memory module, and the cognitive analyzer, resides at the
fog server.

The perception-action cycle of the FC-enabled cognitive
GPR can be described as follows. The GPR transceiver collects
the reflected wave data about subsurface objects. Based on
the types of computation tasks, the delay performance require-
ment, and the resource constraints, a scheduler, running within
the microcomputer at the GPR front end, decides whether each
task should be performed locally or offloaded to the fog server.
Following the decision, the microcomputer either offloads
a task or executes the task locally. With the corresponding
information from the GPR front end, the cognitive analyzer
at the fog server generates control command for the GPR
transceiver reconfigurations. The control command will be
wirelessly sent back to the GPR front-end. As a result, the
operational parameters of the GPR changes in a self-adaptive
manner.

As the GPR moves across a field of interest, it may walk out
of the coverage of a fog server. To ensure continuous sensing,
multiple fog servers can be deployed in the field. As shown in
Figure 3 the GPR approaches the coverage boundary of two
neighboring fog servers, service migration [13] from one fog
server to another can be carried out for the GPR. The service
migration process can be coordinated by a controller. Due
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to space limitation, further discussion on service migration is
beyond the scope of this paper. In the following, the discussion
is focused on the interaction between the GPR and one fog
server.

III. IDENTIFICATION OF COMPUTATION TASKS OF
COGNITIVE PORTABLE GPRS

A. GPR Data Preprocessing

In real time cognitive sensing, the first type of computa-
tion task is background removal, noise filtering and clutter
mitigation. It has been widely demonstrated that averaging
and subtraction is effective in noise reduction [14]–[16]. The
averaging operation is performed by stacking every a number
of adjacent A-scan waveforms [8], which can reduce random

noise and improve radargram signal-to-noise-ratio (SNR). For
the subtraction calculation, an A-scan waveform obtained from
the averaging calculation is selected as the reference and
subtracted from all other averaging A-scan waveforms. Such
calculations can effectively eliminate stationary background
signals, antenna direct couplings, and mitigate the clutter
resulting from ground surface reflection. The averaging and
subtraction is a simple process and does not require intensive
computing resource. Therefore in our proposed FC-enabled
cognitive portable GPR system, this type of computation task
can either be executed by the local computer at the GPR front
end, or offloaded to the fog server, depending on the applied
task scheduling policy.

B. Regions-Of-Interest (ROI) Detection

In radargram, the ROI data have dissimilar features from
the background. By performing statistical analysis to evaluate
data singularity, ROI data segments can be identified. Then by
checking corresponding coordinates, the location and burying
depth of ROI can be determined. In this study, Renyi entropy
analysis [14], [17] is implemented to search for ROI.

For our GPR data processing, Renyi entropy characteriza-
tion is developed to identify the singular region. In particular,
a high Renyi entropy value indicates high degree of data
similarity while a low entropy value highlights high degree
of data singularity. Assume the received GPR reflection signal
is Y (t), it can be described as

Y (t) = D(t) + S(t). (1)

where D(t) represents the reflection signal from the object
of interest; S(t) models remaining interference and noise
upon preprocessing. In calculation, power normalization is
first performed with the summation of the power of the same
time index data points on different traces. The normalization
equation is expressed as

||Yi(t)|| =
|Yi(t)|2∑m
i=1 |Yi(t)|2

(2)

where ||Yi(t)|| is the normalized signal, i denotes the trace
index and m is the total number of traces included; t specifies
the time index of pulse data on each reflection trace waveform.



Fig. 4. DBNN processing GPR B-scan at multiple scales to detect subsurface infrastructure conditions. Each layer of feature detectors maps more complex
relationships within the streaming GPR data.

Upon power normalization, a generalized Renyi’s entropy is
calculated to assess data singularity:

Ea(t) =
1

1− a
loge

m∑
i=1

||Yi(t)||2 (3)

where Ea(t) is the entropy quantification, and a denotes the
entropy order. Eq. (3) is equivalent to the basic Shannon
entropy when a equals 1.

The entropy analysis is an intensive computation process
that highly demands for computing power and CPU time. To
leverage the calculation efficiency, in our FC-enabled cognitive
GPR system, the entropy analysis is most likely implemented
on the fog server instead of on the local computer.

C. DBNN Processing of GPR B-Scan Images
The cognitive analyzer combines the inspection data and

prior knowledge about GPR measurement of structural features
to produce intelligent responses to control radar transceiver
reconfigurations. The cognitive analyzer can be implemented
by applying machine learning to GPR B-scan images [8]. Deep
Belief Neural Networks (DBNNs) [18] are a state-of-the-art
machine learning approach that meets the speed and complex
signal cognitive abilities required for the proposed cognitive
GPR. As shown in Figure 4, A DBNN processes GPR B-scan
images at multiple scales to detect subsurface infrastructure
conditions. Each layer of feature detectors maps more complex
relationships within the streaming GPR data. The output from
the DBNN is used in the feedback loop embodying perception
and action mechanisms to equip the GPR with intelligence to
maximize the inspection information gain. Different deterio-
ration stages can be classified and confidence values for the
classifications can be provided in real time.

IV. DYNAMIC COMPUTATION TASK SCHEDULING

A. The Communication Models of the GPR Front End

As discussed previously, GPR data pre-processing, analysis,
and intelligence generation involves different computation
tasks. Let Din

i and Lin
i denote the input data and data size of

computation task i, respectively. If computation task i is exe-
cuted by the local microcomputer, output data Dout

i with size
Lout
i will be produced. Let Ci be the CPU processing cycles of

computation task i. Assume that the CPU at the local micro-
computer is operating at frequency f l with power consumption

P l. Then, the computation time needed to execute computation
task i at the GPR front end is T l cpi = Ci/f

l; and the local
energy consumption on computation is El cpi = T l cpi · P l.

Assume that if the computation task i is executed locally at
the GPR front end, output data Dout

i needs to be transmitted to
the fog server. Let P tx be the transmit power of the wireless
transmitter at the GPR front end to communicate with the fog
server and B the system bandwidth. The achievable throughput
for transmitting Dout

i is ri = B log2

(
1 + γi·P tx

N0·B

)
where γi is

the channel power gain which is assumed to be constant during
transmitting the data of computation task i; and N0 is the
noise power spectral density at the receiver of fog server. The
communication delay and energy consumption of transmitting
Dout
i can be calculated as T l cmi = Lout

i /ri, and El cmi =
P tx ·T out

i , respectively. Since the computation delay on input
data Din

i and the transmission delay on output data Dout
i of

task i could overlap in time, the overall delay of processing
task i at the GPR front end, tl pri , satisfies

max{T l cpi , T l cmi } ≤ tl pri ≤ T l cpi + T l cmi (4)

where max{T l cpi , T l cmi } corresponds to the case where the
maximum time overlap between computation and transmission
takes place; T l cpi + T l cmi is the case where the transmission
of Dout

i starts right after the computation on input data Din
i

ends without time overlap.
The total energy consumption of processing computation

task i locally, defined as the sum of energy consumption on
both computation and communication, is

Eli = El cpi + El cmi . (5)

B. The Communication Models of the GPR Back End

Assume that if the computation task i is offloaded to the
fog server, input data Din

i needs to be transmitted to the
fog server for task execution. With the throughput ri, the
delay of transmitting input data Din

i to the fog server is
T f cm
i = Lin

i /ri. The corresponding energy consumption on
data transmission is Ef cm

i = P tx · T f cm
i . We assume that

the fog server has powerful computation capability through
parallel computing. Thus, the delay of executing a computation
task at the fog server is negligible.



C. The Proposed Offloading Policy

Next, an offloading policy will be presented for the sched-
uler at the GPR front end to dynamically determine whether
a computation task should be executed locally or offloaded to
the fog server.

The scheduler maintains a computation task buffer. We
assume that different tasks in the buffer are scheduled on a
first-come, first-served basis. Let B = {1, 2, · · · , i − 1, i}
denote the task buffer having i tasks at the present time
with the ith task being the latest one to be processed. It is
also assumed that both the local computation resources and
channel side information for the already scheduled tasks are
available to the scheduler so that based on these information
the scheduler could estimate a timeline of the completion of
the scheduled tasks. Let tq1:i−1 be the overall time needed to
complete the processing of the i−1 tasks existing in the buffer
when the ith task enters the buffer. tq1:i−1 can be considered
as the queuing delay of task i before it is processed. Note that
among these i− 1 tasks, some tasks may be locally executed
at the GPR front end, and others may be offloaded to the
fog server. Let dli, d

f
i ∈ {0, 1} denote the offloading decision

indicator for computation task i, i.e., if the task is decided to
be executed by the local microcomputer at the GPR front end,
dli = 1 and dfi = 0; otherwise dli = 0 and dfi = 1. Thus, the
overall time needed to complete all of the i tasks present in
the buffer can be estimated as

tq1:i = tq1:i−1 + dli · t
l pr
i + dfi · T

f cm
i . (6)

Algorithm 1: The proposed computation task offloading policy.

1 Calculate tl pri , T f cm
i , and tq1:i−1;

2 if T f cm
i + tq1:i−1 ≤ Tmax

i then
3 if Ef cm

i ≤ Eli then
4 Offload computation task i to the fog server by

transmitting its input data Din
i ;

5 else
6 Execute computation task i at the GPR front end,

and transmit the resulting output data Dout
i ;

7 end
8 else if tl pri + tq1:i−1 ≤ Tmax

i then
9 Execute computation task i at the GPR front end, and

transmit the resulting output data Dout
i ;

10 else
11 Drop computation task i.
12 end

The proposed computation task offloading policy for
scheduling task i is shown in Algorithm 1. The offloading
policy takes into account the energy limitation of the mobile
GPR front end. Assume that each computation task i is asso-
ciated with a deadline Tmax

i . At the beginning, the scheduler
calculates the estimated delay T f cm

i of transmitting data Din
i ,

the estimated overall delay tl pri , and the overall time tq1:i−1

needed to complete the i − 1 task present in the buffer. If

computation task i can be executed at the fog server before
its deadline Tmax

i (line 2), and at the same time, the energy
consumption Ef cm

i on transmitting input data Din
i is less than

the energy consumption Eli on local processing of task i (line
3), the computation task will be offloaded to the fog server
(line 4). If computation task i can be executed at the fog server
before its deadline Tmax

i (line 2), and at the same time, the
energy consumption Ef cm

i on transmitting input data Din
i is

larger than the energy consumption Eli on local processing of
task i (line 5), computation task i will be locally executed at
the GPR front end; after the execution, the resulting output
data Dout

i will be sent to the fog server (line 6). This way, the
energy consumption at the GPR front end can be reduced as
much as possible. If computation task i can not be executed at
the fog server before its deadline Tmax

i but it can be processed
locally before the deadline (line 8), computation task i will be
locally executed at the GPR front end; after the execution, the
resulting output data Dout

i will be sent to the fog server. If
computation task i can not be completed either at the GPR
front end or at the fog server (line 10), it will be dropped
from the buffer (line 11).

Fig. 5. Picture of the test site

TABLE I
DATA TRANSMISSION DELAY AND DATA PREPROCESSING DELAY AT THE

GPR FRONT END AND AT THE FOG SERVER WITH DIFFERENT NUMBER OF
A-SCANS.

Measurement Number of A-scan
150 300 600

GPR Data Size (MB) 45.55 89.42 177.30
Delay in transmitting 10.00 18.44 39.25data to the fog server (s)
Delay in preprocessing 7.25 8.00 8.51at the GPR front end (s)
Delay in preprocessing 1.61 1.67 1.79at the fog server (s)

V. PERFORMANCE EVALUATION

A. System Setup

In the experiment, we use a dual-band GPR system with
GSSI SIR-30 control unit which contains all radar electronics
to control GPR signal generation and receiving signal ac-
quisition and transmission. The GPR front end hardware is
configured to be operable in two frequency bands, 400 MHz
and 1.6 GHz. By making the frequency band selectable, it



facilitates to achieve optimum sensing resolution and sensing
depth. A laptop at the GPR front end is utilized to coordinate
the system operation, perform necessary preliminary data
processing, and communicate with a fog server (Intel NUC
Mini PC). The GPR back end resides at the fog server which is
connected to the GPR front end through a street WiFi network.

In the context of fog computing, signal processing and
intelligence generation tasks are partitioned and processed
based on the task scheduling policy. The tasks that demand
less computation resources are executed locally on the GPR
front-end computer while sophisticated computation tasks are
offloaded to the fog server. The processing results direct the
cognitive analyzer to select GPR operational parameters. In
this work, GPR operating frequency is considered as the
parameter to be adjusted at the GPR transceiver module.

Fig. 6. B-Scan Images of sewer pipe obtained with 400 MHz and 1.6 GHz
frequency settings

B. Experimental Results
For design evaluation, an underground sewer inspection is

performed on an institutional campus. The picture of the site
view is shown in Figure 5. In the operation, the GPR radiates
short pulses toward the ground. The reflection signal at each
location produces an A-scan waveform whose amplitude and
phase parameters record the features of subsurface objects that
the pulse encounters during its propagation. By moving GPR
antennas to scan the survey area, numerous A-scan waveforms
are collected. By assembling all A-scan waves together, B-scan
images are obtained to produce more comprehensive views of
the subsurface objects.

Table I shows the communication delay in transmitting GPR
data from the GPR front end to the fog server as well as the
delay in performing the computation task of data preprocessing
at either the GPR front end or the fog server.

Figure 6 shows B-scan images obtained by the dual-band
GPR. For comparison, images acquired with both frequency
band settings are plotted. In the 400-MHz image, the sewer
pipe pattern is detected and labeled. The pipe’s burying depth
is approximately 75 inches. While for the 1.6-GHz configu-
ration, as GPR sensing depth can not surpass 30 inches, the
sewer pipe is not detectable. As a result, in the following scan,
the 400-MHz setting was selected by the cognitive analyzer at
the fog server and sent back to the GPR transceiver.

VI. CONCLUSIONS

This work presented a fog computing framework for the
development of cognitive portable GPRs. The system architec-
ture of the proposed FC-enable cognitive portable GPR was
developed. Different computation tasks in a typical perception-
action cycle of cognitive GPRs were identified and explained.
A computation task offloading policy was designed to deter-
mine whether a computation task should be executed at the
local GPR computer or at the remote fog server. Experiment
was conducted to demonstrate the efficacy of the proposed
system.
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